Referential Translation Machines for Predicting Translation Quality

نویسندگان

  • Ergun Biçici
  • Andy Way
چکیده

We use referential translation machines (RTM) for quality estimation of translation outputs. RTMs are a computational model for identifying the translation acts between any two data sets with respect to interpretants selected in the same domain, which are effective when making monolingual and bilingual similarity judgments. RTMs achieve top performance in automatic, accurate, and language independent prediction of sentence-level and word-level statistical machine translation (SMT) quality. RTMs remove the need to access any SMT system specific information or prior knowledge of the training data or models used when generating the translations and achieve the top performance in WMT13 quality estimation task (QET13). We improve our RTM models with the Parallel FDA5 instance selection model, with additional features for predicting the translation performance, and with improved learning models. We develop RTM models for each WMT14 QET (QET14) subtask, obtain improvements over QET13 results, and rank 1st in all of the tasks and subtasks of QET14.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Translation Performance with Referential Translation Machines

Referential translation machines achieve top performance in both bilingual and monolingual settings without accessing any task or domain specific information or resource. RTMs achieve the 3rd system results for German to English sentence-level prediction of translation quality and the 2nd system results according to root mean squared error. In addition to the new features about substring distan...

متن کامل

Referential Translation Machines for Predicting Translation Performance

Referential translation machines (RTMs) pioneer a language independent approach for predicting translation performance and to all similarity tasks with top performance in both bilingual and monolingual settings and remove the need to access any task or domain specific information or resource. RTMs achieve to become 1st in documentlevel, 4th system at sentence-level according to mean absolute er...

متن کامل

Referential Translation Machines for Predicting Translation Quality and Related Statistics

We use referential translation machines (RTMs) for predicting translation performance. RTMs pioneer a language independent approach to all similarity tasks and remove the need to access any task or domain specific information or resource. We improve our RTM models with the ParFDA instance selection model (Biçici et al., 2015), with additional features for predicting the translation performance,...

متن کامل

RTM-DCU: Predicting Semantic Similarity with Referential Translation Machines

We use referential translation machines (RTMs) for predicting the semantic similarity of text. RTMs are a computational model effectively judging monolingual and bilingual similarity while identifying translation acts between any two data sets with respect to interpretants. RTMs pioneer a language independent approach to all similarity tasks and remove the need to access any task or domain spec...

متن کامل

RTM-DCU: Referential Translation Machines for Semantic Similarity

We use referential translation machines (RTMs) for predicting the semantic similarity of text. RTMs are a computational model for identifying the translation acts between any two data sets with respect to interpretants selected in the same domain, which are effective when making monolingual and bilingual similarity judgments. RTMs judge the quality or the semantic similarity of text by using re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014